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1: Items Completed During this Quarterly Period: 

1.1. Team Project Activity 1: Project Discussion with industrial partners to seek 
additional input 

During the first quarterly reporting period, the research team established a technical 
advisory panel following the requirement of the proposal. The technical advisory panel 
(TAP) included six members including three from industry, two from academics, and one 
from PHMSA. The research team is working with the TAP to establish a non-disclosure 
agreement to ensure secure and smooth information sharing. The research team collected 
very valuable inputs from the TAP on literature review and development of the tool sets, 
and will continue working with the TAP during the project to guide the project to success. 

1.2. Team Project Activity 2: Review related literatures, summarize the previous 
research findings, and facilitate kick-off meeting 

1.2.1 Kick-off meeting 

The kick-off meeting was held on Wednesday, November 29, 2023, from 11:30am -
1:00pm CST. The kick-off meeting included the PHMSA project management team, the 
TAP, and the research team. The research team presented the project and outlined future 
plans. In addition, the research team discussed with PHMSA management team for the 
project objective, expectations, and requirements. The TAP also provided valuable inputs 
to the research team on the product team and indicated of future supports to the research 
team for data supports, testing, etc. 



   

1.2.2 Review related literatures and summarize the previous research findings 

In the dynamic landscape of the oil and gas industry, the efficient and reliable 
transportation of hydrocarbons through pipelines is of great importance. Over 200,000 
miles of hazardous liquids pipelines in the U.S. Of these, 98% transporting crude oil, 
refined petroleum products (gasoline or diesel, highly volatile liquids (HVL), and more 
recently CO2. The integrity of pipelines is critical for ensuring the safety, environmental 
sustainability, and cost-effectiveness of energy transport infrastructure. Historical data 
from PHMSA shows that for liquid pipelines (as oil pipelines), the major causes include 
equipment failure (41.1%), corrosion (28.1%), incorrect operation (14.8%), natural force 
damages (4.2%), and weld or material failure (4.1%). To maintain and monitor pipeline 
health, regular cleaning services using cleaning pigging (PIG) and occasional in-line 
inspection (ILI) services play a significant role for pipeline integrity. Cleaning PIGs 
propelled through the pipeline by the flow of the product being transported or by external 
means such as compressed air or hydraulic pressure. They are used to prevent or mitigate 
the formation of harmful deposits such as scale, wax, or hydrates. Depending on the 
products being transported, the volume of debris in a pipeline, and the cleaning methods, 
cleaning PIGs can be run in various frequencies (up to 2~3 times per week) to reach the 
desired cleanliness. At the same time, the ILI is to examine the interior of pipelines without 
disrupting their operational flow. Smart technologies have elevated this process to new 
heights, enabling comprehensive assessments of structural integrity, identifying potential 
defects, and enhancing overall asset management strategies. From magnetic flux leakage 
(MFL) to advanced ultrasonic testing, these inspection technologies play a pivotal role in 
ensuring the robustness of pipeline infrastructure in the face of evolving industry demands 
[1].  

While facing the challenge of bringing the high techs into the in-line environment, a 
pipeline inspection gauge (PIG) as the entity of cleaning the pipelines insides is always 
introduced to carry the device though the pipelines, which makes it possible for technology 
landing in the pipeline inspection job. In this reporting period, the research team performed 
a thorough literature review on different PIG types with various ILI tools, the computer 
vision and digital twin, and the software design. The concepts of how current state-of-art 
and state-of-practice are involved in the existing smart device assists us with the entity 
manufacturing, electronics mounting and operational procedures, image analysis, and 
software design to achieve the project’s goal of developing an efficient and cost-effective 
dual-purpose PIG.  

1.2.2.1 PIG types 

In the dynamic landscape of the oil and gas industry, the efficient and reliable 
transportation of hydrocarbons through pipelines is of great importance. Pipelines serve as 
the lifelines of this industry, and their integrity is critical for ensuring the safety, 
environmental sustainability, and cost-effectiveness of energy transport infrastructure. To 



   

address the challenges of maintaining and monitoring pipeline health, a new era of 
innovation has emerged, driven by the integration of cutting-edge technologies into the 
very fabric of these conduits. 

The primary objective of in-line inspection (ILI) is to examine the interior of pipelines 
without disrupting their operational flow. Smart technologies have elevated this process to 
new heights, enabling comprehensive assessments of structural integrity, identifying 
potential defects, and enhancing overall asset management strategies. From magnetic flux 
leakage (MFL) to advanced ultrasonic testing, these inspection technologies play a pivotal 
role in ensuring the robustness of pipeline infrastructure in the face of evolving industry 
demands [1].  

While facing the challenge of bring the high techs into the in-line environment, a 
pipeline inspection gauge (PIG) as the entity of cleaning the pipelines insides is always 
introduced to carry the device though the pipelines, which makes it possible of technology 
landing in the pipeline inspection job.  

In this report, literature reviews of different PIG types with various ILI tools are 
conducted to support the dual-purpose design from background knowledge. The concepts 
of how other ILI technologies are involved in the existed smart device assists us with the 
entity manufacturing, electronics mounting and operational procedures to achieve the 
project’s goal of developing an efficient and cost-effective dual-purpose PIG. 

1.2.2.1.1 Cleaning PIG 

The utility PIGs encompass diverse functionalities crucial for the maintenance and 
optimal operation of pipelines. Among these, cleaning PIGs serve the vital role of 
eliminating accumulated solids and debris, while sealing PIGs are designed for the removal 
of liquids, separation of dissimilar fluids, and dewatering processes [2]. According to utility 
PIG selection guidelines, these PIGs are typically oversized the nominal diameter of the 
pipe, ensuring effective coverage for their intended tasks. In the realm of cleaning, two 
predominant materials take the forefront: mandrel PIGs and cast urethane PIGs. The 
former, equipped with a mandrel structure, and the latter, crafted from cast urethane, both 
play pivotal roles in restoring pipelines to optimal efficiency. A cleaning PIG, whether 
mandrel or cast urethane, lies in the meticulous removal of accumulated deposits and 
contaminants from the internal walls of the pipeline. This process not only enhances 
operational efficiency but also mitigates the potential for corrosion and blockages. 

1.2.2.1.2 In-Line Inspection PIG 

An In-line Inspection (ILI) tool serves as a comprehensive solution for evaluating the 
conditions of pipelines and identifying in-line defects such as cracks, corrosion, and 
deterioration [3]. The integration of ILI PIGs with advanced sensing technologies, such as 



   

Magnetic Flux Leakage (MFL), and ultrasonic waves significantly enhances their 
capabilities in detecting the geometry and defects along the pipelines. 

MFL tools are typically integrated into smart PIGs for measuring magnetic leakage 
along pipelines under varying operational requirements [4, 5]. A typical MFL tool-
enhanced PIGs consists of a rigid axial main body, sealing cups, and magnetic components 
as test devices. Due to the need to accommodate magnetic induction devices and data logs 
along the cylinder's main axial, the main body of the PIG has a larger diameter. The MFL-
equipped Pipeline PIGs can be either pulled by a cord or driven by product pressure from 
the back. The front pull hook provides reliable moving power from traction, while, without 
a pulling force, the PIG can be pushed by pressured gas or fluid product from the rear end 
to flow with the transporting product. In extreme scenarios, when the data processing 
system is located at the rear part, pulling a cord can offer better protection for the MFL 
devices. Ultrasonic Pipeline Assessment (UPA) technology stands out as a widely adopted 
nondestructive testing method for inspecting and evaluating the conditions of pipelines. 
Leveraging ultrasonic waves, this technology is adept at detecting and analyzing 
anomalies, including corrosion, cracks, and defects within pipeline walls. The application 
of UPA technology not only provides invaluable insights into pipeline conditions but also 
plays a pivotal role in facilitating proactive maintenance, ensuring pipeline integrity, and 
averting potential failures [6, 7]. 

1.2.2.1.3 Dual-purpose PIG 

A dual-purpose PIG stands out as a versatile solution, seamlessly performing two 
distinct functions simultaneously as it traverses through a pipeline. In contrast to employing 
separate PIGs for each function, this innovative device integrates two functionalities into a 
single unit, optimizing operational efficiency and streamlining the number of required runs. 
The specific functions that a dual-purpose PIG can execute may vary based on its design 
and intended application. However, common examples include dual cleaning and 
inspection, inspection, and leakage detection. As advancements in the pipeline industry 
continue, an increasing number of dual-purpose PIGs are being developed and utilized for 
the practical tasks of cleaning, inspecting, and maintaining pipelines. 

In the realm of dual cleaning and inspection, these PIGs are equipped with cleaning 
elements such as brushes or scrapers. This allows them to not only conduct inspections but 
also remove debris, sediment, or deposits from the pipeline walls concurrently. By 
combining these essential functions, the dual-purpose PIG ensures thorough cleaning 
during the inspection process, minimizing the need for separate cleaning runs. Noteworthy 
examples of dual-function PIGs include the Magnetic Flux Leakage (MFL) and Ultrasonic 
PIGs, typically considered professional types of PIGs. These PIGs are equipped with robust 
cleaning elements such as hard cups, disks, brushes, and scrapers, enabling effective 
cleaning activities alongside fundamental pigging processes. The inspection services of 



   

these PIGs encompass corrosion detection [8-12], pipeline wall crack detection [4,13,14], 
and leakage detection. 

While constrained by physical size to accommodate multiple detecting and inspection 
technologies, the use of dual-function PIGs offers several advantages in pipeline 
maintenance operations. It significantly reduces the number of separate runs required, 
leading to time and operational cost savings. Furthermore, the streamlined approach 
minimizes disruptions to pipeline operations, as fewer intervention points are needed. The 
ongoing development and adoption of dual-function PIGs underscore their value in 
enhancing the efficiency, effectiveness, and sustainability of pipeline inspection and 
maintenance practices. Some example commercially available dual-purpose smart pigging 
services are detailed below: 

(a) I2I PIPELINES™: I2ipipelines™ utilizes the mandrel and foam PIGs as the 
fundamentals of their smart PIGs to perform additional functions attached with 
external sensing devices. These PIGs include pioneer-mandrel-style PIG, smart 
foam fig, patrol-integrated style PIG, respectively. i2i™’s Pioneer is a mandrel-
style smart PIG that can be run in the same way as a conventional cleaning PIG. 
The Pioneer PIGs have advanced electromagnetic sensors embedded into the 
polyurethane. The novel array of electromagnetic sensors which is capable of 
mapping the XYZ information detects shallow internal corrosion and fatigue 
cracking (SICC) in dry gas or multiphase pipelines. All the Pioneer PIGs can be 
launched and recovered from standard pigging facilities. The PU disks that hold the 
sensors are designed to be disposable items and are easily replaced if damaged. The 
electronics are housed inside the body of the PIG which acts as a rated pressure 
vessel. The power pack is rechargeable allowing the tool to be run daily if required. 

(b) Pathfinder Foam Caliper Proving™: Based on the foam type of PIG, Pipeline 
Innovations are conducting pipeline inspection projects for subsea and onshore 
pipelines. Their primary gear is the Pathfinder Smart Foam PIG, and it is capable 
of communicating with the datalogger for quantitative assessment of the 
distribution of scale and wax deposits in operational pipelines. The Pathfinder 
PIG™ comprises a standard polyurethane foam PIG with a bore measurement 
sensing system integrally molded into the foam matrix. The sensors measure the 
compression of the foam at points around the circumference of the tool, allowing 
measurement of bore changes, dents, ovality, scale and wax deposits, and other 
restrictions. The electronics, battery and logging system are located in a removable 
cartridge in the center of the PIG. On completion of an inspection run, the data 
cartridge is removed from the PIG for data download and later re-use. The foam 
carrier PIG will be discarded.  

(c) ROSEN™: The ROSEN™ Group is a provider of cutting-edge solutions in 
pigging, inspection, industrial mitigation, and digital modelling of energy 



   

components such as pipelines and storage tanks. The capability of conducting 
various kinds of PIG traps and analysis technologies incubated numbers of services 
including pipeline material verification, pipeline diagnostic pigging, crack 
detection and assessment, pipeline deformation management, pipeline mapping and 
movement, corrosion management, and storage tank management. The major 
service of their pipeline pigging is provided as cleaning PIGs as basic service and 
multi-section smart PIGs as advanced inspection solution of industrial pipelines. 
The conducted pipeline inspection solutions are integrated by their unique product 
such as bidirectional sensor carriers and designated data loggers.  

1.2.2.1.4 Camera selection 

The deployment of Closed-Circuit Television (CCTV) camera systems in the realm of 
pipeline and sewer inspections has revolutionized the way we perceive and manage 
underground infrastructure. This sophisticated technology serves as a vital tool for 
visualizing, assessing, and maintaining pipelines and sewer systems. The CCTV camera 
system offers a non-intrusive means of gaining crucial insights into the condition of these 
vital networks, minimizing the need for disruptive and costly excavation. Nowadays, 
multiple companies have produced various kinds of underwater axial camera to mounted 
on different motion parts such as robots and ROVs to inspect the components where man 
cannot reach. However, the video system on PIGs are limited due to the novel concept of 
visually access the in-line integrity. In this project, axial HD cameras with lights are the 
main objective in camera review for the further camera adaption task. The detailed 
information of cameras manufactured in different companies are summarized in Table 2. 

1.2.2.2 Software design 

Human senses the world with different modalities, such as taste, vision or touch. 
Similarly, in human computer interaction, a user can exchange information with a 
computer through various modalities. Multimodal interfaces process two or more 
combined user input modes (such as speech, pen, gaze, or manual gestures) in a coordinated 
manner with multimedia system outputs [15]. With a growing consensus multimodal 
interface improved performance, it has found applications in different domains, such as 
health monitoring and assessment [16], affective computing [17], cross-device interaction 
[18] or user study [19]. 

In the past, several frameworks and models [20-23] have been proposed to support the 
design and development of multimodal interfaces. For example, Rousseau et al. [23] 
developed a Multimodal Output Specification Tool, called MOSTe, which specifies 
multimodal output in terms of interaction components, interaction context, and information 
units. A behavioral model based on selection rules defined the adaptation upon different 
situations. Duarte and Carrico [20] proposed a conceptual framework, i.e. FAME, for the 
development of an adaptive multimodal system. The FAME architecture uses different 



   

models to specify the features of a multimodal application from the perspectives of user, 
platform, and environment. An innovative behavioral matrix is introduced to represent 
adaptation rules. Kong et. al. [22] proposes a novel approach, which converts the modality 
adaptation to an optimization problem and considers adaptation from three perspectives: 
the interaction context in the application layer, the resources allocation in the system layer 
and the QoS provisioning in the network layer. Recently, Huang and Kong [21] proposed 
a generic toolkit for prototyping tabletop-centric cross-device applications that involve a 
large display and multiple smartphones. This toolkit combined different sensing 
techniques, such as pressure or infrared camera, to detect a user’s action. Specifically 
speaking, a user uses a smartphone as a look-through lens for browsing and selecting 
objects on a tabletop, and remotely manipulates the selected object with multimodal 
feedback. 

Previous studies on multimodal interaction provide a solid foundation for designing 
and developing an interface with various interaction modalities, which are especially 
suitable for interacting with a device in different interaction contexts. Specifically 
speaking, the usability of a modality can be affected by a factor in an interaction context, 
including the hardware platform, the physical environment, and the state of a user. For 
example, the visual effect may be limited by a small screen on a mobile device; a noisy 
environment can greatly reduce an auditory effect; and blind users are absent of all visual 
stimuli processing. Therefore, multimodal interface promotes the usability by adapting an 
appropriate interaction modality based on the interaction context [20,22].  

In the domain of pipeline inspection, a user needs to interact with an application in 
different contexts, such as indoor or outdoor. Therefore, we will implement a multimodal 
interface to assure usefulness and efficiency of the proposed tool. With the benefits of 
multimodal interaction discussed above, such a multimodal interface not only promotes the 
usability of a standard usage in an office environment, but also assures a safe usage in the 
pipeline field. Previous studies [24, 25] have found that a high cognitive load reduces task 
performance and limits a person’s ability to maintain situational awareness. With a 
multimodal interface, a user can choose an appropriate interaction modality based on the 
physical and personal state, which reduces the cognitive load and thus makes a user 
maintain situational awareness in an outdoor usage. 

1.2.2.3 Deep learning-based computer vision review 

1.2.2.3.1 Pre-processing algorithms 

(a) Noise reduction: Noise reduction involves employing algorithms to eliminate 
unwanted distortions or irregularities, known as noise, from images. These algorithms aim 
to enhance the clarity and quality of images by selectively suppressing or smoothing out 
unwanted elements, which contribute to improved visual analysis, facilitating more 
accurate interpretation and understanding of the underlying content in images. Common 



   

filtering methods include Gaussian filtering [38], median filtering [38], dual filtering [23], 
and advanced filtering techniques such as wavelet denoising [39] and bilateral filtering 
[23,40]. Gaussian filtering applies a weighted average to pixels, reducing high-frequency 
noise, while the median filtering replaces each pixel value with the median of neighboring 
pixels, effective in removing salt-and-pepper noise [38, 41]. Regarding bilateral filtering, 
it is a non-linear smoothing method that preserves edges by considering both spatial 
closeness and intensity similarity [42]. The bilateral filtering reduces noise while 
maintaining important image details, making it valuable in applications of image pre-
processing algorithms [43, 44]. A typical image of a defective polyethylene gas pipe has a 
single background and is not very complex. After Gaussian filtering and bilateral filtering, 
processed image pipe edges were not clear; the mean filtering method kept some noise after 
processing; and the dual filtering retained the edge details and eliminated the noise [23]. 
There are some advanced denoising techniques, such as wavelet denoising [45,46], non-
local means [47], block-matching 3D (BM3D) [48], and Canny edge detector [49]. The 
wavelet denoising decomposes the image into frequency components using wavelets, 
allowing selective noise reduction in different frequency bands [50,51]. The non-local 
means method averages similar patches in images [52], leveraging redundancy for effective 
denoising, while the BM3D method groups similar blocks of pixels and applies 
collaborative filtering to reduce noise [53]. The effect of the wavelet denoising method on 
image noise reduction was investigated in detail in the study of identifying and localizing 
structural damages [54]. In a study of anomaly detection inside a pipeline, a Canny edge 
detector was applied to remove noise and improve image quality before extracting image 
features [49]. The above noise reduction algorithms are widely used in image preprocessing 
for underwater and in-pipe structural damage detection [46,49]. In addition, some other 
deep convolutional image-denoiser networks were also developed to reduce noises in 
original collected data [55]. 

(b) Contrast enhancement: Contrast enhancement involves employing algorithms to 
improve the visual distinction between different elements in an image [56]. The contrast 
enhancement algorithms adjust pixel intensity values to amplify the differences in 
brightness, resulting in a more vivid and perceptually clear image. Common contrast 
enhancement methods include histogram equalization [23,57], contrast stretching [58], 
adaptive histogram equalization (AHE) [59,60], and Retinex image enhancement 
algorithms [61,62]. The histogram equalization algorithm is an image enhancement 
technique that redistributes pixel intensities across the entire dynamic range, effectively 
stretching the histogram to cover the full spectrum [63]. As a comparison, the contrast 
stretching algorithm aims to enhance image contrast by linearly expanding the range of 
pixel intensities between the minimum and maximum values in the original image [64]. 
Therefore, the contrast stretching algorithm stretches the histogram, making subtle 
differences more discernible and enhancing overall image clarity [56]. The AHE algorithm 
is an extension of histogram equalization that operates on localized regions of an image. 



   

By adapting the contrast enhancement to specific image regions, the AHE mitigates over-
amplification of noise, making it suitable for enhancing details in both dark and bright areas 
of an image independently. These contrast enhancement algorithms can solve the problems 
of uneven illumination and inaccurate extraction of anomaly edges in the image acquisition 
during the pipeline detection process [49]. The AHE algorithm improved the quality of the 
image by making a clear separation between the strong and weak parts of the light, forming 
a light mutation boundary. The Retinex-based adaptive image enhancement algorithm can 
simultaneously attenuate the image light too bright part, enhance the image too dark part, 
realize the image brightness equalization, effectively improve the image due to uneven 
illumination caused by the phenomenon of loss of details, and better maintain the image 
texture details. 

(c) Other types of pre-processing algorithms: In addition to noise reduction and 
contrast enhancement, there are some other types of pre-processing algorithms to enhance 
image quality, including normalization, color space conversion, and image augmentation. 
Normalization involves algorithms that scale pixel values in images to a predefined range, 
typically between 0 and 1 [65]. This type of pre-processing algorithm is crucial for 
standardizing the input data, mitigating the impact of varying pixel value scales, and 
ensuring uniformity in image features during machine learning tasks. Common 
normalization algorithms include min-max normalization [66] and standard score (or Z-
score) normalization [67]. These normalization methods contribute to enhancing the 
comparability and convergence of algorithms in image processing and machine learning 
tasks, contributing to more effective and stable anomaly analysis, classification, and 
detection applications. In a study of structural health monitoring for a submarine pipeline 
system, a process of signal normalization was introduced for signal pre-processing [68]. 
The min-max normalization algorithm was also applied to pre-process original collected 
data in a distance measurement research [69]. Color space conversion is the process of 
transforming the representation of color information in an image [70]. Common color space 
conversion algorithms include RGB (red, green, and blue) to grayscale [23,49], RGB to 
HSV (hue, saturation, and value) [71,72], and RGB to YCbCr (a specific color space 
widely utilized in processing digital video) [73]. In the RGB to grayscale conversion, the 
intensity of each pixel is computed as a weighted sum of its red, green, and blue 
components. The resulting grayscale image retains luminance information but discards 
color, making it suitable for reducing computational complexity [74]. Identifying corrosion 
in images in the RGB color space becomes both expensive and cumbersome because the 
chromaticity component of an image can only be obtained using information from the red, 
green, and blue channels. Therefore, the conversion of RGB to HSV can transform a given 
colorful image into HSV color space, where the chromatic and achromatic components of 
the image can be readily distinguished [73,75]. RGB to YCbCr conversion converts RGB 
values into luminance and chrominance components. This transformation separates 
brightness information from color information, making it useful for compression 



   

algorithms and video processing, where changes in color may be more perceptually 
significant than changes in brightness [73]. Grayscale images cannot be used to identify 
corrosion in the RGB color space, while the saturation component of the HSV color space 
made it easy to distinguish between chromatic and achromatic components of in-pipe 
inspection images, which can be used to detect pipe corrosion [75]. 

Class imbalance and data scarcity are challenging issues when training deep learning 
models, augmentation involves algorithms that generate new images by applying various 
transformations to existing ones to diversify training datasets, enhance model 
generalization, and mitigate overfitting by introducing variations in the input data [76]. 
Common transformations include horizontal flipping, vertical flipping, translation, scaling, 
hue, saturation, and lightness [76]. Notably, a generative adversarial network (GAN) can 
also be used to augment the dataset used to train deep learning models for pipeline anomaly 
inspection [3]. For example, an artificial neural network model significantly improved the 
detection accuracy of the depth of corrosion pits in oil and gas pipelines when trained with 
a dataset augmented by a GAN [3]. A hybrid generative adversarial network (GAN) 
integrates two GAN modules, namely a deep convolutional generative adversarial network 
(DCGAN) [77] and conditional generative adversarial network (CGAN) [78], which are 
used to automatically generate labels for artificial images. 

1.2.2.5 Deep learning models 

Depending on the various purposes of pipeline anomaly inspection, existing deep 
learning models can be categorized into classification [80], detection [81], and 
segmentation models [82].  

(a) Classification: Classification is the task of assigning predefined anomalies to 
collected in-pipe inspection images. Neural networks, especially CNN, are widely used in 
classification tasks, demonstrating high effectiveness in various in-pipe inspection 
applications [83, 84]. Moreover, as the number of neural network layers increases, the 
neural network structure becomes more and more complex [85], and in this case the deep 
convolutional neural network (DCNN) can handle more anomaly classification cases. For 
example, during in-pipe inspections, a multilayer classification method based on deep 
convolutional neural networks was developed for classifying different anomalies, 
including broken, deformation, and so on [86]. However, the training of such DCNN often 
requires a larger dataset of in-pipe anomaly images [87]. In addition, the well-known You 
Only Look Once (YOLO) deep learning model was also used to classify pipeline 
anomalies, which was validated with an average F1 score of 87.6% through training on 
4,056 inspection images [88]. Table 1 summarizes representative applications of deep 
learning methods using images for pipe anomaly classification. The accuracy of the deep 
learning models was up to 100%, indicating that it is promising to use deep learning models 
for classifying various pipe anomalies. 



   

Table 1. Applications of deep learning models for automatically classifying pipeline 
anomalies 

# Ref. Year Dataset 
size Anomaly types Deep learning model Accuracy 

1 [88] 2020 4,056 Broken, hole, crack, etc. You Only Look Once (YOLO) 87.6% 

2 [86] 2019 18,333 Broken, deformation, 
etc. DCNN 83.2% 

3 [89] 2019 2.5 million Crack, surface damage, 
etc. CNN 91.6% 

4 [90] 2019 736 Leakage Multi-layer perceptron 100% 
5 [91] 2017 480 Leakage Support vector machine 98% 
6 [92] 2015 239 Crack, collapse, etc. Random forest 89.96% 

7 [93] 2009 / Cracks, corrosion, etc. Change detection approach 84% 

8 [94] 2009 291 Broken, crack, etc. Radial basis network 95% 

9 [95] 2008 291 Crack, broken pipe, etc. Radial basis network 60% 

10 [96] 2006 500 Cracks, holes, etc. Neuro-fuzzy classifier 90% 

11 [97] 2005 868 Infiltration Back-propagation neural 
network 84% 

12 [98] 2002 / Crack and hole Neuro-fuzzy algorithm 92% 

13 [84] 2000 1,096 Cracks, deformation, 
etc. 

Back-propagation neural 
network 98.2% 

(b) Detection: Pipeline anomaly detection requires an efficient, accurate and 
automated method for pipeline defect localization and fine grading. Anomaly detection 
involves locating and classifying anomalies within an in-pipe inspection image or video. 
Common deep learning models for object detection include fast R-CNN [99], faster R-
CNN [100], You Only Look Once (YOLO) [88], and single shot multi-box detector (SSD) 
[99]. These models employ CNN to efficiently process in-pipe inspection images, enabling 
accurate identification and localization of anomalies in diverse scenarios, ranging from 
real-time video analysis to image-based anomaly recognition tasks [99]. The fusion of local 
defect features with global context features helps to improve pipeline anomaly detection. 
In addition, some neural networks with novel structures such as the strengthened region 
proposal network (SRPN) were proposed to enhance feature representation of the fine-
grained anomaly detection [99]. This deep learning model generated representative region 
suggestions for pipeline anomaly detection and localization by fusing multi-scale feature 
maps from the backbone network. In addition, the YOLO deep learning model has been 
proven to accurately and quickly detect pipe cracks, breaks, and other anomalies with a 
mean average precision (mAP) of 85.37% [88]. Table 2 summarizes representative 
applications of deep learning methods for detecting pipeline anomalies. Cracks and broken 
are the main types of anomalies to be detected and located. The accuracy of the deep 
learning models was up to 96%, indicating that it is promising to use deep learning models 



   

for detecting pipeline anomalies. Table 2 highlights the diversity of deep learning models 
such as YOLO, faster R-CNN, SSD, and DCNN, showcasing the successful applications 
in pipeline anomaly detection across different studies. 

Table 2. Applications of deep learning models for automatically detecting pipeline anomalies 

# Ref. Year Dataset size Anomaly types Deep learning 
model Accuracy 

1 [81] 2021 3,600 Crack, etc. Faster R-CNN 77% 
2 [49] 2021 3,000 Crack, etc. Faster R-CNN 83% 

3 [101] 2021 3,000 Crack, etc. YOLO and 
Faster R-CNN 86.3% 

4 [99] 2021 20,000 Crack, deformation, etc. SRPN 82.4% 

5 [99] 2021 20,000 Crack, deformation, etc. SSD 66.6% 

6 [99] 2021 20,000 Crack, deformation, etc. YOLO 73.2% 

7 [99] 2021 20,000 Crack, deformation, etc. Fast R-CNN 72.1% 

8 [99] 2021 20,000 Crack, deformation, etc. Faster R-CNN 75.2% 

9 [88] 2020 4,056 Broken, crack, etc. YOLO 85.37% 
10 [102] 2018 12,000 Cracks, etc. DCNN 86.2% 
11 [100] 2018 3,000 Crack, etc. Faster R-CNN 83% 
12 [103] 2018 350 Crack, perforation, etc. Neural network 96% 

(c) Segmentation: Segmentation is the process of dividing pipeline inspection images 
into meaningful segments or regions [57]. After segmentation, the pipeline inspection 
images can be clearly labeled with the shape and size of the anomalies present in the 
pipeline [104], thus providing a more accurate basis for quantitative assessment of the 
anomalies than the detection results [23]. Deep learning models like DCNN [105], U-
shaped encoder-decoder network (U-Net) [82], mask R-CNN [106,107], and fully 
convolutional network (FCN) [105,108] excel in image segmentation tasks. These models 
contribute to accurate and detailed segmentation across various applications. A novel 
semantic segmentation network based on U-Net was investigated for image segmentation 
of pipeline anomalies, such as cracks [82]. The mean intersection over union (mIoU) [109] 
reached 76.37% and the segmentation speed reached 32 images per second, proving the 
efficiency of the segmentation network [82]. The novel semantic segmentation network 
can segment the shape of in-pipe cracks accurately despite these complicated backgrounds. 
In addition, a DCNN-based neural network, namely DilaSeg-CRF, was proposed to 
segment pipeline anomalies [105]. The DCNN model was trained using 1,880 images with 
a resolution of 512×256 and the corresponding mean intersection over union (mIoU) was 
improved from 52.23% in FCN to 84.85% [105]. 



   

Table 3 summarizes applications of deep learning models for automatically segmenting 
pipeline anomalies across various studies. Notable examples include [110] using the 
improved PointNet++ for dent segmentation with an accuracy of 94.15%, [111] employing 
Mask R-CNN for leakage segmentation with 96.35% accuracy, and [112] utilizing U-Net 
for corrosion segmentation achieving an accuracy of 96.10%. Other studies, such as [105], 
focus on applications like crack segmentation. Table 3 highlights the diverse applications 
of deep learning in pipeline anomaly segmentation, emphasizing the potential for achieving 
high accuracy across different anomaly types and dataset sizes. 

Table 3. Applications of deep learning models for automatically segmenting pipeline anomalies 

# Ref. Year Dataset size Anomaly types Deep learning model Accuracy 
1 [110] 2024 8,100 Dent Improved PointNet++ 94.15% 
2 [111] 2023 11,000 Leakage Mask R-CNN 96.35% 
3 [112] 2023 2,378 Corrosion U-Net 96.10% 
4 [105] 2020 1,880 Crack, etc. DCNN 85% 
5 [82] 2020 3,654 Crack, etc. U-Net 76% 
6 [113] 2019 1,510 Crack, etc. Deep dilated CNN 95% 

1.2.2.6 Emerging technologies (digital twin and advanced sensors) 

Emerging technologies in pipeline inspection and anomaly detection are 
revolutionizing the field, offering more efficient, accurate, and safer methods for anomaly 
detection and maintenance in complex and critical infrastructure. Augmented reality and 
digital twin technologies are applied for immersive training, simulation, and visualization 
during pipeline inspection [24]. These technologies offer enhanced training experiences 
and facilitate real-time decision-making by providing a virtual overlay of data onto the 
physical pipeline environment [123]. Siemens has proposed the Pipeline 4.0 concept, 
which utilizes digital twin technology to reduce the operating costs of pipeline systems 
without risk or cost [124]. At this stage, Pipeline 4.0 mainly focuses on the development 
of digital twins for pumping stations rather than pipelines. Petro China used digital 
restoration techniques, such as digital 3D modeling, to construct the digital twin of the 
China-Myanmar oil and gas pipeline [125]. A digital twin framework for underground 
pipeline safety assessment was proposed based on augmented reality [24]. 

Utilizing advanced sensor technologies, such as distributed fiber optic sensors 
[126,127] and hyperspectral imaging [128], allows for more comprehensive data 
collection. These advanced sensors enhance the ability to detect anomalies by capturing 
detailed information about pipeline conditions, including structural integrity [24,127] and 
material composition [128]. A distributed fiber optic system for monitoring pipelines was 
developed to address the problem of real-time monitoring of various anomalies over long 
distances [127]. The experimental results show that the detection rate of the method is 



   

higher than 96% [127]. In addition, by analyzing the strain profile of the distributed fiber 
optic sensors, a comprehensive view of the pipe deformation can be obtained [129]. 

 
2: Items Not-Completed During this Quarterly Period: 

All tasks and subtasks planned for this quarter season have been fulfilled and completed. 
 
3: Project Financial Tracking During this Quarterly Period: 

The following figure including the project financial tracking during this quarterly period: 
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